62 COMPUTE!

Novernber, 1981, Issue 18

The Practical Side Of
Assembly Language

Part II: Loops And Arrays

daiegh, N

In the last installment (COMPUTE! #14) [presented
some ideas on how to represent and use flags in
6502 assembly language programs. This tume 1 will
discuss methods for programming loop control
structures for the manipulation of arrays of data.
Let's start by writing a loop which simply initializes
all elements of an array to zero. In BASIC, you
might write:

100 DIM AR(50)

110 FORI=1TO 50

120 AR()=0

130 NEXTI

If you are a neophyte assembly language
programmer and try to translate this program
segment on a line-by-line basis, you might wind up
with something like this:

AR =%+ 50 i$SPACEFOR ARRAY AR (50 BYTES)
I *=*+ 1 sLOOPCOUNTER VARIABLE]I
LDA #1
STA I sSINITIALIZE LOOP COUNTER
LOOF LDA #0
LDX 1 sRECALLCURRENT LOOP
COUNTER
STA ARX sSET ELEMENT OF ARRAYTO O
INX sADVANCE TONEXT ELEMENT
STX 1 ;STORE INDEX REGISTER
CPX #50 ;CHECK AGAINST LIMIT
BNE LOOP sREPEAT UNTILDONE

If you run this program you’ll be dismayed to
find out that it only sets the last 49 elements of the
array to 0 and skips the first element, because the
first element of the array should be indexed with a
Zero, not a one.

Rule #7. To access the first element of an
assembly language array, you should usc an index
of 0, not 1. The last element of an array of size N is
indexed by N-1.

You may also recognize that it is not necessary
to allocate space or save the variable 1 for the loop.
Since it is only needed to control the loop, it can be
simply kept in the index register (I chose the X
register; the Y register will serve equally well). We
can correct and improve the loop as follows:

AR *=%+ 50 sSPACEFORARRAY AR (50 BYTES

LDA #0

sCONSTANT TOFILLARRAY
WITH
TAX s X=0=INITIALINDEXTO
ARRAY AR
LOOP STA ARX ;ZEROOUT ONE ARRAY
ELEMENT
INX ;ADVANCETO NEXT ELEMENT
CPX #50 ;CHECK INDEX AGAINST LIMIT
BNE LOOP sREPEAT UNTIL DONE

You may notice some other subtle improve-
ments in this program segment. The A register is
only loaded with 0 once, outside the loop, since it
does not change inside the loop. This will make the
program run faster by eliminating 49 unneeced
repetitions of the LDA #0 instruction.

Rule #8. Move code which does not need to
be repeated out of the loop if possible.

Also note that one byte of code was saved by
using TAX to initialize the X register instead of
LDX #0. Naturally if we were filling our array with
something other than 0, this trick won’t work. We
now have a correctly-functioning loop which is
equivalent of our BASIC program (surictly speaking,
is not exactly equivalent because the BASIC
interpreter uses floating point arithmetic which
uses four or five bytes for each array element
instead of one).

Can our loop be further improved in terms of
efficiency? Consider this alternative:

AR *=*+ 50 ;SPACE FOR ARRAY (50 BYTES

LDA #0 sCONSTANT TOFILL THE ARRAY
WITH

LDX #49 sINDEX TOLAST ELEMENT OF
THE ARRAY

LOOP STA ARX sSET ANELEMENT OF THE

ARRAYTOO

DEX ;BACKUP TO PREVIOUS
ELEMENT

BPL LOOP sREPEAT UNTILDONE

This code segment fills the loop backwards, filling
the last element first and the first element last.
Once the Oth element has been filled, the index
register is decremented 10 -1 {8FF) and the BPL
LOOP instruction will exit the loop. Notice that we
have eliminated the CMP instruction from the
loop, saving two cycles.

Rule #9. Moving backwards through an
array will usually be more efficient.
H you try (o make the array bigger than 128 ele-
ments you will be in trouble! Suppose you increase
the dimension of AR to 200. In this case your loop
will be executed only once because on the first
pass, the DEX insuruction will change the index
from 199 to 198. But 198 has the hexadecimal
representation $C6, which has bit 7 (the sign bit}
set to 1. Therefore the 6502 will consider thisa
negative number (-58 decimal) and the BPL in-
struction will let control “fall through.” Therefore,
our BPL instruction will only work right up to
+ 127 decimal, which is the largest signed 8-big
number. We can remedy this problem for index
values up ro 255 with a slightly more “tricky,” but
equivalent, method:

AR *=*+ 200 iSPACEFOR ARRAY (200 BYTES)

LDA #0 ;CONSTANT TO FILL ARRAY
WITH
LDX #200 s INDEXTO LAST ELEMENT OF

THEARRAY +1

o COMPUTE!

ovembar, 1581, issue 13

LOOP 5TA AR-1LX ;SET AN ELEMENT OF THE
ARRAYTOO
DEX ;BACKUPTOPREVIOUS
ELEMENT
BNE LOOP ;REPEAT UNTILDONE

Here we have replaced the BPL instruction with a
BNE instruction so that the loop will terminate one
pass earlier, but will not be stymied by index values
greater than 127. Since our last pass through the
array will now have an index of 1 instead of 0, we
must compensate by changing the destination for
our indexed STA instruction to AR-1. Therefore
the last element set will be AR-1+1 = AR+0.
Finally, the starting index must be bumped from
199 to 200 for the same reason. Note that a starting
index of 0 will clear a full 256 byte array.

The same technique can be used to move a
block of data of up to 256 bytes from one known
location to another:

ARA *=*+ 200 ;ARRAY A CONTAINING 200
ELEMENTS
ARB *=%*4+ 200 ;ARRAY B CONTAINING 200
ELEMENTS
LDX #200 iNUMBER OF ELEMENTS TO
MOVE
LOOP LDA ARA-L,X ;FETCHELEMENTOFARRAYA
STA ARB-1LX INSTALLINARRAYB
DEX sDECREMENT TO PREVIOUS
ELEMENT
BNE LOOP ;REPEAT UNTILDONE

What happens if you have more than 256
bytes? Throw away your 6502 and get a processor
with a 16-bit index register? Nope. The indirect,X
and indirect,Y addressing modes will solve this
problem.

Rule #10. To use arrays of more than 256
bytes or arrays whose location is not known at
assembly time, plan on using indirect,X or
indirect,Y addressing.

Unlike the absolute, indexed addressing
modes, indirect, X and indirect,Y are not equivalent.
You may remember that indirect, X addressing
uses pre-indexing and indirect,Y uses post-index-
ing. As a practical matter, indirect,X addressing
will almost always be used with a permanent index
of 0, simulating simple indirect addressing. This
mode lends itself to manipulating large data arrays
in non-time-critical portions of a program. For
example, the following loop initializes a 1000-
element array to 0:

ARRAY *=*+ 1000 ;ROOM ARRAY OF 1000
ELEMENTS
PTR tzty 2 sPOINTER TO AN ARRAY
ELEMENT
CLRIK LDA #ARRAY&SFF sLOW 8 BITS OF ADDRESS
OFSTART OF ARRAY
STA PTR ;INITIALIZE POINTER
LDA #ARRAY/256 sHIGH 8§ BITS OF AD-
DRESS OF START OF
ARRAY
STA PTR+1 sINITIALIZE HIGH BYTE
OFPOINTER

LDX #0 ;PERMANENTLY LOAD

XWITHO
LOOP LDA #0

STA (PTR.LX ;ZEROBYTE POINTED
TOBY PTR

INC PTR sBUMP POINTER UP TO
NEXTELEMENT

BNE CHECK ;BRANCH IFNOT
CROSSING PAGE
BOUNDARY

INC PTR+I ;ELSEBUMP HI-ORDER
BYTEOFPOINTER

CHECK LDA PTR
CMP #ARRAY + 1000&$FF ;CHECK POINTER

AGAINST LIMIT
BNE LOOP ;REPEATIFNOT DONE
LDA PTR+1
CMP #ARRAY +1000/256 ;ELSECHECK HIBYTE
OFPOINTER
BNE LOOP ;REPEATIF NOT DONE

Some assemblers use the notation #<ARRAY w0
mean the low byte of the address of ARRAY
and #>ARRAY for the high byte instead of
#ARRAY&SFF and #ARRAY/256. Clearly this
program segment is quite a bit “messier” than the
one for arrays of less than 256 bytes. When planning
sizes for arrays, you should remember this and try o
limit arrays to 256 bytes or less whenever practical.
Luckily, the indirect,Y addressing mode is
considerably more powerful than indirect,X. For
our final problem, let's use the indirect.Y mode 1o
build a subroutine te move a large block of data
from one place to another in memory as fast as
possible. The source address, destination address,
and number of bytes to be moved are to be specified
as input to the routine as three 16-bit variables in
page 0:

FROM *=%4 2 ;POINTERTOSTARTING ADDRESS OF

ARRAY TOMOVE

sPOINTER TOSTARTING ADDRESS
OF DESTINATION

sNUMBER OF BYTES TO COPY

TO *=F4 2
COUNT *=*+ 2

In an earlier example we saved execution time by
removing the need for a compare inside the loop.
We can apply the same principle to speed up our
block move by sub-dividing the routine inte two
loops, one which moves entire pages (1 page =256
bytes), and one which moves the final fractional
page. This allows us 1o aveid any compares in the
part which moves entire pages(which is part of the
routine executed the most when copying large
blocks). This will also let us use both 8-bit index
registers to maximum effectiveness hy allocating
onc for counting pages and index registers to
maximum effectiveness by allocating one for count-
ing pages and the other for indexing bytes within
the page. The resulting routine (shown in Program
4) can easily be converted into a block-fill routine
instcad by removing FROM and all lines that refer
to it, and presetting A to 0 {or the value with which
to fill the array).

Rule #11. To deal with large arrays. split
your program into two loops, one to operate on
entire pages and one to operate on the “leftover”

&6 COMPUTE!

MNoverriosr, 1981, Issue 18

fractional page.

The routine in Program 4 moves data at about
16.1 machine cycles per byte for large blocks, which
means a 16K byte array can be moved in 0.26
seconds using a 6502 with a IMHz clock. In certain

applications where speed is of paramount impor-
tance, you may wish to improve even this super-[ast
copy routine. Can it be done? Yes, if you are willing
to trade some increased program size for increased
execution speed. Again, we employ the same gen-

Program 2: Keyboard Driver with Alpha Lock Flag
Using 0 =False and Non-0 =True

- et e wy g

I)

1700 PAD . $1700
1701 PADD = $1701
0000 ' . $1760
1780 A900 INCE LDA #800
1782 800117 STA PADD
1785 ADOO1T INCH1 LDA PAD
1788 30FB BMI INCH1
1784 2C0017 INCH2 BIT PAD
178D 10FB BPL INCH?

LEditor's Note: Part of this program was not printed in

COMPUTE! #/4. we reprind 1l entirely heve. — RTM

SUBROUTINE INCH: KEYBOARD DRIVER FOR ASCII-ENCODED
KEYBOARD WITH PARALLEL INTERFACE.

ADDRESSES SHOWN ARE FOR 6530 ON KIM-1 COMPUTER,
KEYBOARD DATA LINES TO PORT A BITS 0 TO 6,
NEGATIVE-GOING STROBE TO BIT 7.

ON ENTRY: IF ALFALK IS NON-O, THEN ALL LOWERCASE LETTERS WILL
BE RETURNED AS THE EQUIVALENT UPPERCASE ALPHA.

ON RETURN: REGISTER A = ASCII CODE FOR KEY PRESSED;

X AND Y PRESERVED.

;KIM PORT A DATA REGISTER ON 6530
;KIM PORT A DATA DIRECTION REGISTER

;PROGRAM ORIGIN

;SET PORT DIRECTION = INPUTS
; TEST PORT

;WAIT FOR STROBE PULSE

sWAIT FOR END OF STROBE

IF ALPHA-LOCK FLAG IS SET, FOLD ANY LOWERCASE LETTERS TO

;SAVE CHARACTER TEMPORARILY

s RECALL "ALPHA LOCK" FLAG

;BRANCH IF NO FOLDING DESIRED
;ELSE RECALL CHARACTER

;LOWER CASE "Z" + 1

;BRANCH IF PUNCTUATION

sLOWER CASE ™A™

;BRANCH IF NOT LOWER CASE ALPHA
;ELSE FOLD TO EQUIVALENT UPPERCASE

;RECALL CHARACTER

5 ALPHA LOCK FLAG (DEFAULT = ALLOW LOWER CASE)...

s"ALPHA LOCK"™ FLAG; NON-O=UPPERCASE ONLY.

;
H
5 EQUIVALENT UPPERCASE LETTERS.
;
178F 148 FOLD PHA
1760 ADA317 LDA ALFALK
1793 FOOC BEQ FOLD2
1795 68 PLA
1796 C9TB CMP #$7B
1798 BOO6 BCS FOLD!
1794 €961 oMP #$61
179C 9002 BCC FOLD1
179E 920 SBC #$20
1780 60 FOLD1 RIS
;
1741 68 FOLD2 PLA
1742 60 RTS
3
;
1743 ALFALK .BYTE 0
0000 ’ .END

NO ERROR LINES

November, 1981, lssue 18

COMPUTE! &

Program 4: Block-Move Memory Routine

GENERAL BLOCK-MOVE SUBROUTINE

0002
0003
ooou
0005
006
007

0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031

0032
0033
0034
0035
0036
0037
0038
0039
0040
ook
o042
0043
0044
0045
0046
o047
0048
0049
0050
0051

0

0000
0000
0000
0002
0004
0006
0006
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2002
2004
2006
2006
2006
2006
2008
200A
200B
200D
200F
2011
2012
2014
2014
2014
2014
2016
2018
2014
201C
201D
201E
2020

2020 ¢

2021
2021

A000O
4605
FOOE

B10C
9102

DOF9
E601
E603

DOF2

FROM

COUNT

L s v e we W4 we s WE ue e e we owa s e

LKMOV
3
i

;
PAGMOV

)
FRCMOV

FRLOOP

H
DONEMV

ERRORS IN PASS 2

MTU 6502 ASSEMBLER 1.0

.PAGE 'GENERAL BLOCK-MOVE SUBROUTINE®

%= 0 ;ZERO PAGE ORIGIN

LELES 2 ; STARTING ADDRESS OF BLOCK TO BE COPIED
LELEY 2 s STARTING ADDRESS OF DESTINATION

LELES 2 ;NUMBER OF BYTES TO BE MOVED

L] $2000 ;ORIGIN FOR PROGRAM

THIS ROUTINE COPIES A BLOCK OF ANY SIZE FROM ONE
LOCATION TO ANOTHER.

ON ENTRY: FROM (2 BYTES) IS THE STARTING ADDRESS OF
THE BLOCK TQ BE COPIED; TO (2 BYTES) IS THE DESIRED
STARTING DESTINATION ADDRESS FOR THE COPY; COUNT

{2 BYTES) IS THE NUMBER OF BYTES TO COPY.

ON RETURN: NO REGISTERS PRESERVED; FROM, TO AND COUNT
ARE CLOBBERED.

NOTE: THE DESTINATION BLOCK MAY OVERLAP THE SOURCE
BLOCK ONLY IF "TO" IS AT A LOWER ADDRESS THAN "FROM".

LDY #0 ;INITIAL INDEX WITHIN A PAGE
LDX COUNT+1 ;NUMBER OF PAGES TO BE MOVED
BEQ FRCMOV ;BRANCH IF ONLY A FRACTIONAL PAGE

THIS LOOP COPIES ENTIRE PAGES,..

LDA (FROM),Y ;FETCH A BYTE FROM SOURCE

STA (TO),Y ;COPY TO DESTINATION

INY ;BUMP POINTER

BNE PAGMOV ;REPEAT TILL ENTIRE PAGE MOVED

INC FROM+1 ;BUMP HI BYTE OF POINTERS

INC TO+1

DEX ;DECREMENT COUNT QF PAGES TO COPY
BNE PAGMOV ;REPEAT TILL ALL WHOLE PAGES COPIED

THIS LOOF COPIES THE FINAL FRACTION OF A PAGE...

LDX COUNT ;RECALL NUMBER OF BYTES LEFT TO COPY
BEQ DONEMV ;BRANCH IF COUNT IS EXACT PAGE MULTIPLE
LDA (FROM),Y ;FETCH A BYTE FROM SQURCE

STA {T0),Y ;COPY TO DESTINATION

INY ;BUMP INDEX

DEX ;DECREMENT COUNT OF BYTES LEFT

BNE FRLOOP ;REPEAT UNTIL DONE

RTS

.END

68 COMPUTE!

November, 1981. Issue 18

eral principle of loop optimization:

Rule #12. To optimize loop execution speed,
try to remove unnecessary compares from within
the loop.

About the only way we can remove more com-
pares from Program 4 is to “unwind” part of the
loop and, instead, write some of the loop code “in-
line.” Since we know the first loop will always move
exactly 256 bytes, we can move two bytes at a time
instead of one before checking for a page crossing:

PAGMOV LDA (FROM),Y ;FETCHABYTEFROMSOURCE
STA (TO),Y ;COPY TO DESTINATION
INY ;BUMP POINTER
LDA (FROM),Y ;;FETCHABYTEFROMSOURCE
STA (TO)Y ;COPY TO DESTINATION

INY ;BUMP POINTER
BNE PAGMOV ;;REPEATTILLENTIREPAGE
MOVED

This loop now takes 14.5 cycles per byte moved
versus 16 cycles for the equivalent loop of Program
4, because the three cycle BNE instruction is only
executed for every other byte moved. The loop can
be unwound still further to move four, eight or
more bytes per pass, but the speed improvement
gained drops off rapidly as more code is written
inline.

In the next installment I will explore some
techniques for optimizing jumps and subroutine
calls.

28D4-
8407~
B8D9~
aanc-

980D~
08DF-

UBEL-
GBE2-
98E3~

EE

AD
60

48
AS

A
20
29
68
20

Al
2e
28
60

AD
85

85
68

A9
28
A9
2
€2

e
AS
e
6e

21
(i1}
D4
N
DA

<9

D7
22
BD

113
es
B8

a8

08
0B

08
L)

08
oa

as

(1]

as

48
R8s

33

Enter at ROM LINK:
Use 00C2 for Listing 1
Listing 08CO for Listing 2
2 20D2 FF
2 0980 20EDFD
lor2 2063 A6
1 20 A0TE
lor? 200672
2z 200BFE
2 20A5FC
1 2
? ?

-

7

Listing 1 Listing 2

Q0DF 08DD
DOEC 08DE
00E1 08DF
00EZ 08EQ
0002 0800

¢Bs4- FO 93 8560 BEQ HOERRZ
0656- 28 83 08 8579 JSR ERROR ; ADDRS,R{A),{ADDRS,X)
0E59- 2@ 63 @9 0580 NOCERRZ JSR INCCRY
035C- 28 70 8@ 8530 JSR INC<ADDRSC
ge5F- DY F@ 0600 BNE LOOP2
P61~ FB C7 g6l BEQ NX<PATRN
0963~ C8 0646 TNCKRY nY
0264~ AD E4 BB 0650 LDA TEST<TYPE
V067~ FO 06 0666 BEQ ERITL
ggga- ce Fi 0670 Ce¥ #SF3 ; RESET R{Y) TO CHECK
B- 90 02 0680 BCC EXITL .
936D~ AG @B 0690 LDY 500 EHIE SELECTS
086F~ 60 8700 EXITI RTS
8710
0728 5
8370- £6 40 3730 INCCADDRSC INC ¥ADDHS
0272~ DO 92 8740 BNE SHIP<HT
0074~ E6 41 8750 INC *ADDRS+531
§976- AD E1 @0 0760 SKIP<HI LDA END
#0879~ ¢5 20 a778 CNP *ADDRS
6878~ DI €5 9760 BNE EXIT2
687D AD £2 @8 0790 LDA END+581
60B0- €5 E1 B8ED CMP *ADDRS+§01
oBB2- 60 8810 EXITZ RTS
5640 yOUTPUT THE ERROR; ADDRESS, PATTERN, ERROR
6a83- 48 8850 ERROK PHA
0284~ AS 01 98690 LDA “ADDRS+$B1
p386- 24 AC @0 OB7Q JSR TRYT ; OUTPUT ADDRS HI
#089- AS 80 8888 LDA *RDDES
§288- 20 AC 00 D890 JSR TBYT ; OUTPUT ADDRS LO
0ZBE- 2¢ D6 A0 0908 3SR SPACE2
¢091- 68 8910 PLA
8892~ 20 AC @D 0928 3SR TBYT : OUTPUT PATTERN
8895~ 22 D6 @0 P93P JSR SPACE2
9988~ Al 80 5949 LDA (ADDRS,X}
809A- 20 AC 00 D950 JSR TBYT ; OUTPUT ERROR IN MEMORY
929D~ 26 CB @0 296D JSR CRLF
00A0- 6F a37¢ RTS
@380 ; 5
9350 | TABLEA
1060 ; INITIALIZE ADDRS WITH START
9aAl- AD DF P2 1610 INI<ADDRS LDA START
00A4- 85 00 1020 STA *ADDRS
0pA6- AD E@ OF 1030 LDA START+§01 Computer
BeA9- 85 61 1040 STA *ADDRS+§01 PET
8¢AB- 60 1059
1960 ; APPLE Il
1870 S
10808 ;ROUTINE TO OUTPUT A BYTE SYM
20AC- 48 1898 TaYT BHA KIM
BOAD- 42 1100 LSR A
BOAE- A 1118 LSR A ﬂéﬂ
BOAF- 4A Hga LSR i; QSI 65D
POBE- A b LSR A T S
aaml- 20 BS 94 1140 JSR NIBBLE Western Dara Systems
80B4- £8 1150 LA ATARL
agB5- 29 IF 1150 NIBBLE AND £5OF AIM
aes7- 89 38 1170 CRA £539 o
aoBo- 3 3 1189 cHP £53A Super KIM
agpE- 90 B2 1194 BCC WRITE
A9BD- 69 86 1208 ADC #506
1214
1220 ;ROUTINE TO WRITE AN ASCII CHAR.
@OGF- BC E5 86 1239 W STY SAVEY
80C2- EA 1240 ROM.LIKE NOP
€0C3- EA 1250 HoP
00C4- ER 1260 NOP
60C5- £A 1278 NOP
00C6- EA 1284 NOP TABLEB
BACT~ AC E5 €0 1230 LDY SAVEY
gach- 6B i3ee = Start Address lo
1310
1328 ;ROUTINE TO ou'riyévg CRLF Start Address hi
00CB- A9 0D 1339 CRLF LDA #50D p
00CD- 20 BF #8 1348 JSR WRITE End Address lo
#8DB- A3 OR 1358 LDA #50A End Address hi
:gg;_ ég Briee ﬁ'gz JSR WRITE Execution Address
1380
1399 ;SPACE2 = OUTPUT 2 SPACES
1480 ;SPACE = OUTPUT 1 SPACE
80D6- 20 DY BF 1410 SPACE2 JSR SPACE
pDa- A9 28 1420 SPACE LDA '
@@ps- 22 BF 0B 1430 JSR WRITE
#ODE- 61 1440 RTS
1450
1460
08DF~ 1470 START .D§ 2 ;USER ENTERS START OF WEMORY RANGE
POEl~- 1488 END .DS 2 ;USER ENTERS END OF MEHORY RANGE
1498
POE3- 1500 TESTSPATRN .08 1 SCURRENT TEST PATTERN
B0E4- 1518 TESTCTYPE .DS 1 t=k,2 FOR TEST TYPE
BAES- 1528 SAVEY .05 1 {SAVE R{Y¥}
1538
1548
1550 END.PGM .EN

Statement 140: $0002 For Test |
$O800 For Test 2

Universal 6502 Memory Test
EASTERN HOUSE SOFTWARE
Carl W, Moser

3239 Linda Drive

Winston-Salem, NC 27106

